Distribution-Aware Continual Test Time Adaptation for Semantic Segmentation

Student: Jiayi Ni* , Senqiao Yang* , Jiaming Liu† 💆

Advisor: Shanghang Zhang

Tong Class (Class of 2022), Peking University

ni_jiayi@stu.pku.edu.cn & shanghang@pku.edu.cn

Overview

Main Contributions

- 1. Distribution-Aware Tuning (DAT)
- DAT adaptively select two small parameter groups: Domain-Specific Parameters (DSP) and Task-Relevant Parameters (TRP).
- Selection based on degree of distribution shifts.
- Addresses issues of error accumulation and catastrophic forgetting.
- 2. Parameter Accumulation Update (PAU) strategy
- At early stage, only small fraction of parameters (0.1%) selected for each sample.
- Parameters added to updated group until distribution shift is small.
- 3. State-of-the-art (SOTA) Performance

Pipeline

- Cityscape-ACDC and SHIFT continual datasets.
- Effectiveness in solving semantic segmentation CTTA problem.

Distribution-Aware Tuning Framework

- 1. Teacher-student framework
- Exponential Moving Average (EMA) - Utilizes pixel-wise consistency loss for

optimization. - Obtains uncertainty map from teacher model for distribution evaluation.

2. Parameter Selection

- (a) Domain-Specific Parameters (DSP)
- (b) Task-Relevant Parameters (TRP)
- Selection based on distribution shift.

3. Parameter Accumulation Update (PAU) strategy.

- Selects only a small fraction of

parameters for each sample.

- Added to gathered parameter groups.

4. DSP and TRP Selection Details - Based on gradient sensitivity.

Conclusion

Our Distribution-Aware Tuning (DAT) method presents an efficient and practical solution for Semantic Segmentation Continual Test-Time Adaptation (CTTA) in real-world scenarios. DAT intelligently selects and fine-tunes two distinct sets of trainable parameters: domain-specific parameters (DSP) and task-relevant parameters (TRP). This helps mitigate issues of error accumulation and catastrophic forgetting during the continual adaptation process. Given that CTTA in the context of autonomous driving operates on temporal sequences, we introduce a Parameter Accumulation Update (PAU) strategy. This strategy enhances the stability of parameter selection and updates, ensuring a more reliable adaptation process.

Discussion

PERFORMANCE COMPARISON FOR CITYSCAPE-TO-ACDC CTTA. DURING TESTING. THREE TIMES. MEAN DENOTES THE AVERAGE MIOU SCORE. GAIN QUANTIFIES THE METHOD'S IMPROVEMENT COMPARED TO THE SOURCE MODEL

	Time		t ——													\rightarrow		
	Round			1					2					3		ſ	Maant	Gain
Method	REF	Fog	Night	Rain	Snow	Mean↑	Fog	Night	Rain	Snow	Mean↑	Fog	Night	Rain	Snow	Mean↑	Mean	Gam
Source	NIPS2021 [29]	69.1	40.3	59.7	57.8	56.7	69.1	40.3	59.7	57.8	56.7	69.1	40.3	59.7	57.8	56.7	56.7	/
TENT	ICLR2021 [30]	69.0	40.2	60.1	57.3	56.7	68.3	39.0	60.1	56.3	55.9	67.5	37.8	59.6	55.0	55.0	55.7	-1.0
CoTTA	CVPR2022[5]	70.9	41.2	62.4	59.7	58.6	70.9	41.1	62.6	59.7	58.6	70.9	41.0	62.7	59.7	58.6	58.6	+1.9
							-											

61.5

PERFORMANCE COMPARISON FOR SHIFT DATASET'S CONTINUOUS VALIDATION SET. ACC DENOTES THE AVERAGE ACCURACY SCORE.

EFFECT OF SELECT PARAMETERS' SELECTION METHOD. W/O PAU means the selection of 10% parameters from the first frame in THE TARGET SEQUENCE. W PAU DENOTES THE UTILIZATION OF OUR PAU

Scenarios	Daytim	e – Night	Clear -	– Foggy	Clear -	– Rainy	Mean
Method	mIoU	ACC	mIoU	ACC	mIoU	ACC	mIoU
Source	64.22	71.84	61.51	69.87	66.14	73.87	64.01
TENT	64.21	71.67	61.65	69.76	66.11	73.68	63.99
CoTTA	68.06	74.18	64.78	71.41	69.92	76.29	67.61
Ours	68.63	75.34	65.31	72.68	70.56	77.34	68.17
					0.0		10 D

ABLATION:	CONTRIBUTION O	OF EACH	COMPONENT
-----------	-----------------------	---------	-----------

	TS	DSP	TRP	mIoU↑	Gain
Ex_1				56.7	/
Ex_2	\checkmark			58.7	+2.0
Ex_3	\checkmark	\checkmark		60.2	+3.5
Ex_4	\checkmark		\checkmark	60.3	+3.6
Ex_5	\checkmark	\checkmark	\checkmark	61.1	+4.4

	w/o	PAU	w PAU		
Method	mIoU	ACC	mIoU	ACC	
Confidence	59.1	71.1	60.6	71.3	
Uncertainty	60.3	71.4	61.1	72.2	

Fig. 4. Different percentages of updated parameters (DSP + TRP)

Reference

[1] T. Sun, M. Segu, J. Postels, Y. Wang, L. Van Gool, B. Schiele, F. Tombari, and F. Yu, "Shift: a synthetic driving dataset for continuous multi-task domain adaptation," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 21 371-21 382. [2] C. Sakaridis, D. Dai, and L. Van Gool, "Acdc: The adverse conditions dataset with correspondences for semantic driving scene understanding," in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 10765–10775. [3] Q. Wang, O. Fink, L. V. Gool, and D. Dai, "Continual test-time domain adaptation," ArXiv, vol. abs/2203.13591, 2022.

[4] D. Wang, E. Shelhamer, S. Liu, B. A. Olshausen, and T. Darrell, "Tent: Fully testtime adaptation by entropy minimization," in ICLR, 2021.

[5] A. Tarvainen and H. Valpola, "Mean teachers are better role models: Weightaveraged consistency targets improve semi-supervised deep learning results," Advances in neural information processing systems, vol. 30, 2017.

[6] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo, "Segformer: Simple and efficient design for semantic segmentation with transformers," Advances in Neural Information Processing Systems, vol. 34, pp. 12 077–12 090, 2021.

